Subject 11198 - Neuronal networks Group 1 # **Syllabus** ### **Subject** **Subject / Group** 11198 - Neuronal networks / 1 **Degree** Master's Degree in Human Cognition and Evolution Credits Period Second semester Language of instruction English #### **Professors** | Lecturers | Office hours for students | | | | | | | |------------------------------|---------------------------|----------------|--------|------------|------------|----------------------------|--| | Lecturers | Starting time | Finishing time | Day | Start date | End date | Office / Building | | | Claudio Rubén Mirasso Santos | 12:30 | 13:30 | Monday | 03/09/2018 | 01/07/2019 | 202 Edificio
Institutos | | | claudio.mirasso@uib.es | | | | | | Universitarios | | | | | | | | | de Investigación | | ## Context Professor:Claudio Mirasso received the Ph.D. degree in physics from the Universidad Nacional de La Plata, Buenos Aires, Argentina, in 1989. He has held Postdoctoral positions in Spain and The Netherlands. He is a Full Professor at the Physics Department, Universitat de les Illes Balears, Palma de Mallorca, Spain, and Researcher of the Institute for Cross-Disciplinary Physics and Complex Systems. His current research interests include synchronization and control of dynamical systems, information processing, neuronal dynamics, dynamics and applications of delayed coupled systems and applications of nonlinear dynamics in general. He has five years of teaching periods and fiveyears o fresearch periods recognized. #### Subject The aim of this subject is to introduce the students into the computational neuroscience. The subject covers an introduction to the brain, a modeling part for individual neurons, the synapsis, the model of neuronal populations and neural networks,noise effects as well as sincronization aspects and metods to measure characteristics of physiological signals. #### Requirements Subject 11198 - Neuronal networks Group 1 # **Syllabus** #### Recommended It is recommended that the student has basic concepts on numerical integration of differential equations as well as fortran, C or Mathlab programing. #### **Skills** ## Specific - * E2: Development and optimal application of numerical algorithms for the simulation of complex systems. - * E6: To understand and to model processes subject to fluctuations. . - * E8: To know to characterize generic behavior of dynamical systems and their instabilities. . #### Generic - * TG2: To acquire the capacity to develop a complete research plan covering from the bibliographic research and strategy to the conclusions. - * TG4: To acquire the ability to ask questions, read and listen critically and participate actively in seminars and discussions. #### Transversal * You may consult the basic competencies students will have to achieve by the end of the Master's degree at the following address: http://estudis.uib.cat/master/comp basiques/. #### Basic * You may consult the basic competencies students will have to achieve by the end of the Master's degree at the following address: http://estudis.uib.cat/master/comp_basiques/ ## Content ## Range of topics 1-. Introduction Membrane potential and electrical currents. Neuronal activity: generalities Nerve impulse Voltage dependent channels 2-. Models of individual neurons Hudgkin-Huxley experiment Hudgkin-Huxley model; pulses and bursts Reduced models; Integrated & Fire, Morris Leccar, Fitzhugh Nagumo, Izhickevich, etc. 3-. Synapses Chemical and electrical synapses 2/5 2018-19 Academic year Subject 11198 - Neuronal networks Group Group 1 # **Syllabus** Neurotransmitters and receptors. Synaptic and postsynaptic conductance. Short-range plasticity Dynamic of coupled neurons. ## 4-. Synchronization Introduction Synchronization of identical systems Synchronization of nonidentical systems #### 5-. Interacting systems Characterization of time series Calculations of autocorrelation and cross-correlation Mutual entropy. Populations of neurons. Neural networks #### 6-. Information Encoding Temporal coding Rate Coding #### 7-. Effects of noise Gaussian white noise, color noise and Poisson noise Effect of background activity of neuronal systems. 8-. Examples ## Teaching methodology In-class work activities (0.77 credits, 19.25 hours) | Modality | Name | Typ. Grp. | Description | Hours | |------------------------|-------------------------|-----------------|--|-------| | Theory classes | Theoretical
Lectures | Large group (G) | Explanation of thoretical concepts by the professor. | 13 | | Seminars and workshops | Oral Presentations | Medium group (M |) Oral presentation of scientific papers | 2.5 | | Practical classes | Numerical
Excersies | Medium group (M | Development of computational programs to study neuronal dynamics | 1.75 | | Assessment | Questionnarie | Large group (G) | Toevaluate every 2 weeks the progress of the students | 2 | At the beginning of the semester a schedule of the subject will be made available to students through the UIBdigital platform. The schedule shall at least include the dates when the continuing assessment tests will be conducted and the hand-in dates for the assignments. In addition, the lecturer shall inform students as to Subject 11198 - Neuronal networks Group 1 # **Syllabus** whether the subject work plan will be carried out through the schedule or through another way included in the Aula Digital platform. ## Distance education tasks (2.23 credits, 55.75 hours) | Modality | Name | Description | Hours | |---------------------------|--------------------------------------|---|-------| | Individual self-
study | Program developments | The student has to prepare a software program to solve an specific problem. | 35.75 | | Individual self-
study | Preparation on the oral presentation | The student must read some papers and organize a presentation | 20 | ## Specific risks and protective measures The learning activities of this course do not entail specific health or safety risks for the students and therefore no special protective measures are needed. ### Student learning assessment #### Frau en elements d'avaluació In accordance with article 33 of Academic regulations, "regardless of the disciplinary procedure that may be followed against the offending student, the demonstrably fraudulent performance of any of the evaluation elements included in the teaching guides of the subjects will lead, at the discretion of the teacher, a undervaluation in the qualification that may involve the qualification of "suspense 0" in the annual evaluation of the subject". ## **Oral Presentations** Modality Seminars and workshops Technique Oral tests (non-retrievable) Description Oral presentation of scientific papers Assessment criteria 15 minutes presentation of a scientific paper Final grade percentage: 20% with a minimum grade of 5 #### **Numerical Excersies** Modality Practical classes Technique Papers and projects (retrievable) Description Development of computational programs to study neuronal dynamics Assessment criteria Developement of numerical codes to sudy neuroal circuits Final grade percentage: 35% with a minimum grade of 5 4/5 Subject 11198 - Neuronal networks Group 1 # **Syllabus** #### Questionnarie Modality Assessment Technique Short-answer tests (retrievable) Description Toevaluate every 2 weeks the progress of the students Assessment criteria Evaluation of the progress of the student Final grade percentage: 35% with a minimum grade of 5 #### **Program developments** Modality Individual self-study Technique Papers and projects (retrievable) Description The student has to prepare a software program to solve an specific problem. Assessment criteria Preparation of numerical codes Final grade percentage: 10%with a minimum grade of 5 ## Resources, bibliography and additional documentation #### **Basic bibliography** - 1. Neurophysiology, D. Stratton, LIMUSA, 1981. - 2. Theoretical Neuroscience, P. Dayan and L. F. Abbott, MIT Press, 2001. - 3. Spiking Neuron Models, W. Gerstner and W. Kistler, Cambridge University Press, 2002. - 4. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, E. Izhikevich, The MIT press, 2007. - 5. The synchronization of chaotic Systems, S. Boccalettia; J. Kurthsc, G. Osipovd, D.L. Valladaresb; C.S. Zhouc, Physics Reports 366 (2002) 1–101. #### Complementary bibliography 6. Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation, Z Piwkowska, M. Pospischil, R Brette, Julia Sliwa, M. Rudolph-Lilith, T. Bal, A. Destexhe, Journal of Neuroscience Methods 169 (2008) 302–322. #### Other resources NEURAL NETWORKS AND BIOLOGICAL MODELING- LECTURER: PROF. WULFRAM GERSTNER (Youtube) \$ 5 / 5